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Abstract. The problem of lhe numerical study of instability of N-body gravitating system by 
means of Lyapunov characteristic exponents is considered. The discontinuity of Lyapunov 
exponents is shown for computer-created syslems both with soFlened and, what is more 
interesting, unsoftmed (i.e. pure Newtonian) potentials. The Lyapunov technique thus cannot be 
considered as an appropriate method of study of N-body systems, and physical and astrophysical 
interpretations of results of previous computer studies appear to be unfounded. 

The numerical study of instability of N-body gravitating systems has, since the pioneering 
paper by [I]. become one of the important areas of computer simulations. It is partly 
determined by the relation of instability properties of that system with relaxation-driving 
mechanisms in star clusters and galaxies. The latter factor became crucial after the proof 
of exponential instability of spherical N-body systems [2,  31 and the evidence of essential 
consequences it can have for stellar dynamics. 

Numerical studies performed to investigate this problem are based on the calculation 
of the growth of perturbations by time (see [4,5] and references therein), considered to be 
Lyapunov characteristic exponents of the system. 

In the present paper, therefore, we investigate the 'problem of validity of the 
Lyapunov exponent technique to the computer study of N-body problems. We show 
that the calculations of Lyapunov exponents for N-body systems with softened and even 
unsoftened (!) potential can have no any relation to properties of the corresponding real 
system. 

We approach this problem from the concept of the theory of dynamical systems, enabling 
us to arrive at general conclusions, valid for d-dimensional Hamiltonian systems with any 
potential. 

Consider a smooth d-dimensional manifold M, with a given o-field of measurable sets 
B(M) and complete measure P (P(M) = 1). 

Let ( f'] be a group of diffeomorphisms on M with continuous t E R (or discrete I E Z) 
time: 

f ' : M + M  f o = i d  f"+' = fS 0 f' 
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for arbitrary times f , s .  Then (M,B(M), P ,  f )  we will call a dynamical system with 
continuous (or discrete) time. The dynamical system is measure-preserving if 

P ( f ‘ A )  = P ( A )  VA E B ( M )  V t  E R ,  

V G Gurzadyan and A A Kocharyan 

We denote by V the space of all dynamical systems (M. B ( M ) ,  P, f) with appropriate 
topology. 

We define a function Q on 2): 

@ : V +  R .  

Well known examples of such functions are Kolmogorov-Sinai (KS) entropy and Lyapunov 
mean-characteristic exponents: 

xi = / x j ( x ) ~ ( d ~ )  i = I ,  ...,q 
M 

where x i @ )  are Lyapunov characteristic exponents 

and 

X I  xz ..’ ’ xq. 

Now we argue the crucial role of the following question: is Q a continuous function? 
At first sight the answer to this question does not seem to be of much interest, since 

when one deals with a given dynamical system the behaviour of a certain function for 
different systems is not important. 

It is undoubtedly so for analytical methods, while for computer studies this point can 
become of extreme importance. Let us illustrate this idea by the following example. 

Consider the manifold 

M = 3’ = R’/Z = {el0 4 8 I }  
with given Lebesgue measure P ( S ’ )  = 1, and class of dynamical systems 

fm : SI -+ st : e H {e  + a] 
where the brackets denote a fractional part. 

Define Q in the following way: 

fu is ergodic 
fa is not ergodic @( fa) = @(a) = 

Evidently fa is ergodic when LY is an irrational number, and is non-ergodic when a is 
rational, i.e. 

a is irrational I: ,  LY is rational. @(a) = 

Now if one tries to evaluate @(A), one will find out whether the dynamical system fJi 
is ergodic or not, say, via looking for the periodicity of orbits. Since the computer cannot 
deal with irrational numbers one is forced to study the following sequence of dynamical 
systems {fa”], where an’s are rational numbers for any n and 

lim a. =A, 
n-CS 
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One may expect the following result 

= lim Q(LY,) = o 

though the real value of a(&) is 1. So 
“-U2 

Computer image of f ~ i  # Real image of fa. 
Therefore one can never figure out by computer methods @(a) when (Y is irrational. This 
example clearly shows what in fact happens when one tries to study a dynamical system 
by computer. 

In a typical case one is forced to consider not the diffeomorphisms f but 

f: = f r  + E ( t )  

because of the inevitable computing enors ~ ( t )  arising at truncation of numbers. As a result, 
when QJ is not a continuous function all numerical calculations can completely lose their 
meaning, i.e. the computer’s QJc( f) does not coincide with real one, @( f) .  

In some cases such a situation can arise as a result of deliberate change of the behaviour 
o f f  to avoid ‘naughty’ functions, as it just happens at ‘softening’ of the Newtonian potential. 

Thus we arrive at the following two questions reflecting both fundamental properties of 
function QJ: 

(S) Is 4(fs) close to its computer image Q J c ( f r ) ?  (stability); 
(C) Is @(f) the limit of @p(f,) as E (bifurcation parameter) tends to zero? (continuity). 

As a representation of particular interest of 4 we shall consider Lyapunov characteristic 
exponents. 

First, recall the following quite remarkable results. 

l (a)  According to Maii€’s theorem (see [6]) when M is a compact surface, C’ area- 
preserving non-Anosov diffeomorphisms, all of whose Lyapunov exponents are equal 
to zero Lebesgue almost everywhere, and are everywhere dense. 

l (b)  In general, Lyapunov exponents are discontinuous functions of a bifurcation 
parameter [7]. 

l(c) Topological entropy is proved to be discontinuous for dimM 2 4 [8]. 

We see that Lyapunov exponents can be highly discontinuous. 

function @. 
The example considered above can be an illustration of this typical property of 

On the other hand one has the following properties. 

2(a) Topological entropy is continuous at dimM = 2 [SI. 
2(b)For some dynamical systems it is proved that Lyapunov exponents are upper- 

continuous [9]. 
2(c)  Though typically Lyapunov exponents are highly discontinuous, there exists regular 

family of perturbations fulfilling conditions discussed in [6] making them stable. 

We see that while the properties I(a)-(c) make doubtful the usefulness for computations 
of Lyapunov exponents, properties 2(a)-(c) leave some hope. What is evident is the 
necessity of thorough consideration of this problem in any given particular case. 

In view of the results described above, let us turn to our problem of the stability in the 
case of an N-body system. 

First remember that the trajectories of Hamiltonian system 

H(P3 9 )  = p P , P ”  + V ( q )  
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in the region of configurational space 
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= I4IV(q) < E) 
can be represented as geodesics of M with a Riemannian metric 

G = [ E  - V ( q ) ] g  E Wg 

and affine parameter s: 

d s = & W d t .  

It is also well known that the stability properties of geodesics on unit vector bundle 

S M = { u  E TM I G(zL.u) = I }  

can be determined by the behaviour of Riemann (Riem).  Ricci (Ric)  and scalar ( R )  
curvatures. 

Indeed, Jacobi equation 

V,V,n + Riem(n,  u)u = 0 
where V is the Levi-Civita connection of the metric G, and vectors ZL and n denote 
the velocity on geodesics and their deviation, shows that behaviour of deviation vector n 
depends on Riemannian tensor Riem. 

Moreover, if M is a compact manifold with local symmetric metric G, and negative 
sectional curvature, then one may obtain Ks-entropy h(f) of geodesical flow using either 
the following formula: 

where 

Bt,v = Riem(v,  u)u 
or Pesin’s formula 

where x are the Lyapunov exponents. 
Comparing these two formulas, one can readily infer that 

X ( 1 1 ) 2 ( S  - 11 @I U) - -8, 
For local symmetric metrics, as one has, for example, while looking for the motion of 
photon beam in Friedmann Universe with negative curvature [lo]. it reads 

So, if one averages in space and time reparametrization, then for a general dynamical 
system one arrives at 

Instability mean index - Lyapunov exponent. 

Let us recall that in order to obtain Lyapunov exponents one has to integrate a dynamical 
system and linearize it  for f which tends to infinity. Of course it is an impossible task, 
if one evaluates Lyapunov exponents by means of computer simulations. Therefore one 
is forced to consider only finite parts of trajectories of the dynamical system. Besides, as 
far as the N-body gravitating system is concerned, one comes across singularities. So the 
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instability mean index is just connected with those Lyapunov exponents which are obtained 
in computer calculations. 

Therefore, the problem of continuity of Lyapunov exponents is reduced to the study of 
the continuity of the Riemannian tensor, particularly since the latter is not continuous if the 
scalar curvature R is discontinuous. So the problem amounts to the investigation of the 
instability mean index A’-a measure of average (in space) instability for the d-dimensional 
Hamiltonian system: 

1 3 lldwll’ --+ _ - _  - 
2AW ( 2  d)  W d(d - 1) d 

- 2RW’ A2 E - 

where the time reparametrization is made and 

Previously, in [l I], we introduced a measure of relative instability based on the value 

In the case of N-body gravitating system one has d = 3N and 
of Ricci curvature. 

N (1-1 

v(q) = - 

where the function 47 is not specified yet. Then one has 

gP, = M,6,, /L = (a. i) 6”” = &b&j M” = MO q” = r i  

where a = 1,. . . , N and i = 1.. . . , 3 .  

GMaM647(r06) r& = (rib)’ + (r&)’ + (r:b)’ rLb = r: - r; 
e=] b=l 

Calculating the instability mean index, taking into account that 

one has 

A’= A I  + A2 

where the following notations are used: 

IF01 ’ - - ( F 1  0 )  ’ + (F:)’+ (F:)’ 

Now consider a class of potentials 9&) containing the two main cases. 
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(i) Newtonian potential (E = 0): 

V G Gurzadyan and A A Kochaiyan 

1 
r 

(pg(r) = - . 

(ii) Softened Newtonian potential (E  # 0): 

Let us look for the behaviour of h when both r and E are close to zero, i.e. for the continuity 
of the mean index in the physically most interesting case. For this purpose one has to obtain 
the following limits: 

2 lim lim i (r,  E )  = --CO 
c-ror-bo 

lim lim h2(r. E )  = +w 
r - t O E - 0  

When E = 0, i.e. in the case of an unsoftened potential, the mean index is determined by 
122 and the system is exponentially unstable, since 

A2 r-3 as r + O .  

This limit corresponds to the close encounter of at least two particles. 

behaviour: the mean index is a complex number, 
The same limit when E # 0, for the softened potential, reveals completely different 

A2 - +-3  as E + O  

since it is determined by first member A , ;  as a result the system is not unstable any more. 
We see that the mean instability index and hence Lyapunov exponents in the case of an 

unsoftened potential are discontinuous 

lim A, # ho . 
8-0 

Moreover, the unsoftened system has quite different behaviour, particularly in accord with 
point 2(b) of section 2, and is more stable than the original Newtonian system. 

A qualitatively similar situation is in the case of another perturbed potential 

A marked dependence of the growth of initial errors on the parameter of softening has 
already been noticed during computer simulations [ l a ,  131. 

Thus the calculations of Lyapunov exponents by means of computer methods for N-body 
systems cannot lead to any meaningful results. 

Already this fact is enough to seriously influence the conclusions of numerous computer 
studies of the instability of softened systems (see 141). Other difficulties of those studies, 
particularly concerning the interpretation of relaxation-type effects, were outlined in [ 141. 

However, the next conclusion of the present study is even more radical: the principal 
impossibility of the investigation of the instability of not only disturbed but even l / r -  
potential N-body systems by computers. 

These conclusions demonstrate the necessity for the creation of new computer codes to 
describe the N-body system with phase trajectory close to the physical one for long enough 
timescales (in a physical sense). 
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